1(i) ⇒	$T = 25 + ae^{-kt}$. When $t = 0$, $T = 100$ $100 = 25 + ae^{0}$	M1	substituting $t = 0$ and $T = 100$ into their equation (even if this is an incorrect version of the given equation)
$\begin{array}{c} \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \end{array}$	a = 75 When $t = 3$, $T = 80$ $80 = 25 + 75e^{-3k}$ $e^{-3k} = 55/75$ $-3k = \ln (55/75)$, $k = -\ln (55/75) / 3$ = 0.1034	A1 M1 M1 A1cao [5]	substituting $t = 3$ and $T = 80$ into (their) equation taking lns correctly at any stage 0.1 or better or $-\frac{1}{3}\ln(\frac{55}{75})$ o.e. if final answer
(ii) ((A) $T = 25 + 75e^{-0.1034 \times 5}$ = 69.72 (B) 25°C	M1 A1 B1cao [3]	substituting $t = 5$ into their equation 69.5 to 70.5, condone inaccurate rounding due to value of k .

Т

т

٦

2 (i)	When $t = 0$, $P = 5 + a = 8$ $\Rightarrow a = 3$ When $t = 1$, $5 + 3e^{-b} = 6$ $\Rightarrow e^{-b} = 1/3$ $\Rightarrow -b = \ln 1/3$ $\Rightarrow b = \ln 3 = 1.10$ (3 s.f.)	M1 A1 M1 M1 A1ft	substituting $t = 0$ into equation Forming equation using their <i>a</i> Taking lns on correct re-arrangement (ft their <i>a</i>)
(ii)	5 million	B1	or $P = 5$
		[6]	

Г

3 (i) $\ln (3x^2)$ (ii) $\ln 3x^2 = \ln(5x + 2)$	B1 B1	$2\ln x = \ln x^2$ $\ln x^2 + \ln 3 = \ln 3x^2$
$\Rightarrow 3x^2 = 5x + 2$ $\Rightarrow 3x^2 - 5x - 2 = 0^*$	M1 E1	Anti-logging
(iii) $(3x + 1)(x - 2) = 0$ $\Rightarrow x = -1/3 \text{ or } 2$	M1 A1cao	Factorising or quadratic formula
x = -1/3 is not valid as ln (-1/3) is not defined	B1ft	ft on one positive and one negative root
	[7]	

5 $T = 30 + 20e^{0} = 50$	$e^{-0.05t} = -e^{-0.05t}$ $= -1$	B1	50
$dT/dt = -0.05 \times 20e^{0}$		M1	correct derivative
When $t = 0$, $dT/dt = -0.07$		A1cao	-1 (or 1)
When $T = 40$, 40 $\Rightarrow e^{-0.05t} = \frac{1}{2}$ $\Rightarrow -0.05t = \ln \frac{1}{2}$ $\Rightarrow t = -20 \ln \frac{1}{2}$	$= 30 + 20e^{-0.05t}$ = 13.86 (mins)	M1 M1 A1cao [6]	substituting $T = 40$ taking lns correctly or trial and improvement – one value above and one below or 13.9 or 13 mins 52 secs or better www condone secs

Question	Answer	Marks	Guidance		
6 (i)	$\frac{dy}{dx} = \sin 2x + 2x \cos 2x$ $\frac{dy}{dx} = 0 \text{ when } \sin 2x + 2x \cos 2x = 0$ $\implies \frac{\sin 2x + 2x \cos 2x}{\cos 2x} = 0$	M1 A1 M1	$d/dx(\sin 2x) = 2\cos 2x \text{ soi}$ cao, mark final answer equating their derivative to zero, provided it has two terms	can be inferred from $dy/dx = 2x \cos 2x$ e.g. $dy/dx = \tan 2x + 2x$ is A0	
	\Rightarrow tan 2x + 2x = 0 *	A1 [4]	must show evidence of division by $\cos 2x$		
(ii)	At P, $x \sin 2x = 0$ M1 $\Rightarrow \sin 2x = 0, 2x = (0), \pi \Rightarrow x = \pi/2$ A1At P, $dy/dx = \sin \pi + 2(\pi/2) \cos \pi = -\pi$ B1 ftEqn of tangent: $y - 0 = -\pi(x - \pi/2)$ M1	M1 A1 B1 ft M1	$x = \pi/2$ ft their $\pi/2$ and their derivative substituting 0, their $\pi/2$ and their $-\pi$ into	Finding $x = \pi/2$ using the given line equation is M0 or their $-\pi$ into $y = mx + c$, and then evaluating c : $y = (-\pi)x + c$, $0 = (-\pi)(\pi/2) + c$ M1 $\Rightarrow c = \pi^2/2$ $\Rightarrow y = -\pi x + \pi^2/2 \Rightarrow 2\pi x + 2y = \pi^2 *A1$	
	$\Rightarrow \qquad y = -\pi x + \pi^2/2$ $\Rightarrow \qquad 2\pi x + 2y = \pi^2 *$ When $x = 0, y = \pi^2/2$, so Q is $(0, \pi^2/2)$	A1 M1A1	substituting 0, then $\pi/2$ and then π/π into $y - y_1 = m(x - x_1)$ NB AG can isw inexact answers from $\pi^2/2$		
(iii)	Area = triangle OPQ – area under curve	[7] M1	soi (or area under PQ – area under curve	area under line may be expressed in	
	Triangle OPQ = $\frac{1}{2} \times \frac{\pi}{2} \times \frac{\pi^2}{2} = \frac{\pi^3}{8}$	B1cao	allow art 3.9	integral form or using integral:	
				$\left(\frac{1}{2}\pi^2 - \pi x\right) dx = \left[\frac{1}{2}\pi^2 x - \frac{1}{2}\pi x^2\right]_0^{\pi/2} = \frac{\pi^3}{4} - \frac{\pi^3}{8} \left[=\frac{\pi^3}{8}\right]$	
	Parts: $u = x$, $dv/dx = \sin 2x$	M1	condone $v = k \cos 2x$ soi	<i>v</i> can be inferred from their ' <i>uv</i> '	
	$\int_{0}^{\pi/2} x \sin 2x dx = \left[-\frac{1}{2} x \cos 2x \right]_{0}^{\pi/2} - \int_{0}^{\pi/2} -\frac{1}{2} \cos 2x dx$	A1ft	ft their $v = -\frac{1}{2}\cos 2x$, ignore limits		
	$= \left[-\frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x \right]_{0}^{\pi/2}$	A1	$[-\frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x]$ o.e., must be correct at this stage, ignore limits		
	$= -\frac{1}{4}\pi\cos\pi + \frac{1}{4}\sin\pi - (-0\cos0 + \frac{1}{4}\sin0) = \frac{1}{4}\pi[-0]$	A1cao	(so dep previous A1)		
	So shaded area = $\pi^3/8 - \pi/4 = \pi(\pi^2 - 2)/8^*$	A1 [7]	NB AG must be from fully correct work		